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Abstract. Graph partitioning is an important and well studied prob-
lem in combinatorial scientific computing, and is commonly used to re-
duce communication in parallel computing. Di↵erent models (graph, hy-
pergraph) and objectives (edge cut, boundary vertices) have been pro-
posed. For large problems, the partitioning itself must be done in parallel.
Several software packages, such as ParMetis, PT-Scotch and Zoltan are
widely available. In this paper we evaluate the performance of the parallel
graph and hypergraph (PHG) partitioner in the Zoltan toolkit. For the
first time, we compare the performance of PHG as a graph and hyper-
graph partitioner across a diverse set of graphs from the 10th DIMACS
implementation challenge.

Keywords: graph partitioning, parallel computing

1 Introduction

Graph partitioning is a well studied problem in combinatorial scientific com-
puting. An important application is the mapping of data and/or tasks on a
parallel computer, where the goals are to balance the load and to minimize
communication [7]. There are several variations of graph partitioning, but they
are all NP-hard problems. Fortunately, good heuristic algorithms exist. Nat-
urally, there is a trade-o↵ between run-time and solution quality. In parallel
computing, partitioning may be performed either once (static partitioning) or
many times (dynamic load balancing). In the latter case, it is crucial that the
partitioning itself is fast. Furthermore, the rapid growth of problem sizes in
scientific computing dictates that partitioning algorithms must be scalable. The
multilevel approach developed in the 1990s [1, 6, 12] provides a good compromise
between run-time (complexity) and quality. Software packages based on this ap-
proach (Chaco [8], Metis [9], and Scotch [13]) have been extremely successful.
Even today, all the major parallel software packages for partitioning in scientific
computing (ParMetis [10], PT-Scotch [14], and Zoltan [5]) use variations of the
multilevel graph partitioning algorithm.

The 10th DIMACS implementation challenge o↵ers an opportunity to evalu-
ate the state-of-the-art in partitioning software in 2011. This is a daunting task,
as there are several variations of the partitioning problem (e.g., objectives), sev-
eral software codes, and a large number of data sets. In this paper we limit
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the scope in the following ways: We only consider parallel software since our
focus is high-performance computing. We focus on the Zoltan toolkit since its
partitioner can be used to minimize either the edge cut (graph partitioning) or
the communication volume (hypergraph partitioning). We include some baseline
comparisons with ParMetis, since that is the most widely used parallel parti-
tioning software. We limit the experiments to a subset of the DIMACS graphs.
One may view this paper as an updated version of the IPDPS’06 paper that
introduced the Zoltan PHG partitioner [5].

2 Models and Metrics

The term “graph partitioning” can refer to several di↵erent problems. Most
often, it refers to the edge cut metric, though in practice the communication
volume metric is often more important. For the latter objective, it is useful to
extend graphs to hypergraphs. Here, we review the di↵erent models and metrics
and explain how they relate.

2.1 Graph Models

Given an undirected graph G = (V,E), the classic version of graph partition-
ing is to partition V into k disjoint subsets (parts) such that all the parts are
approximately the same size and the total number of edges between parts are
minimized. More formally, let ⇧ = {⇡0, . . . ,⇡k�1} be a balanced partition such
that

|V (⇡
i

)|  (1 + ✏)
|V |
k

8i, (1)

for a given ✏ > 0. The edge cut problem (EC) is then to minimize the cut set

C(G,⇧) = {{(u, v) 2 E}|⇧(u) 6= ⇧(v)} . (2)

There are straight-forward generalizations for edge weights (minimize weighted
cuts) and vertex weights (balance is weighted).

Most algorithms and software attempt to minimize the edge cut. However,
several authors have shown that the edge cut does not represent communica-
tion in parallel computing [2, 7]. A key insight was that the communication is
proportional to the vertices along the part boundaries, not the cut edges. A
more relevant metric is therefore the communication volume, which roughly cor-
responds to the boundary vertices. Formally, let the communication volume for
part p be

comm(⇡
p

) =
X

v2⇡(p)

(�(v,⇧)� 1) , (3)

where �(v,⇧) denotes the number of parts that v or any of its neighbors belong
to, with respect to the partition ⇧.
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We then obtain the following two metrics:

CV
max

(G,⇧) = max
p
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p

) (4)

CV
sum

(G,⇧) =
X

p

comm(⇡
p

) (5)

In parallel computing, this corresponds to the maximum communication vol-
ume for any process and the total sum of communication volumes, respectively.

2.2 Hypergraph Models

A hypergraph H = (V,E) extends a graph since now E denotes a set of hyper-
edges. An hyperedge is any non-empty subset of the vertices V . A graph is just
a special case of a hypergraph where each hyperedge has cardinality two (since
a graph edge always connects two vertices). Hyperedges are sometimes called
nets, a term commonly used in the (VLSI) circuit design community.

Analogous to graph partitioning, one can define several hypergraph parti-
tioning problems. As before, the balance constraint is on the vertices. Several
di↵erent cut metrics have been proposed. The most straight-forward generaliza-
tion of edge cut to hypergraphs is:

C(H,⇧) = {{e 2 E}|⇧(u) 6= ⇧(v)whereu 2 e, v 2 e} . (6)

However, a more popular metric is the so-called (�� 1) metric:

CV (H,⇧) =
X

e2E

(�(e,⇧)� 1) , (7)

where �(e,⇧) is the number of distinct parts that contain any vertex in e.
While graphs are restricted to structurally symmetric problems (undirected

graphs), hypergraphs make no such assumption. Furthermore, the number of
vertices and hyperedges may di↵er, making the model suitable for rectangular
matrices. The key advantage of the hypergraph model is that the hyperedge
(�� 1) cut (CV) accurately models the total communication volume. This was
first observed in [2] in the context of sparse matrix-vector multiplication. The
limitations of the graph model were described in detail in [7]. This realization led
to a shift from the graph model to the hypergraph model. Today, many partition-
ing packages use the hypergraph model: PaToH [2], hMetis [11], Mondriaan [15],
and Zoltan-PHG [5].

Hypergraphs are often used to represent sparse matrices. For example, using
row-based storage (CSR), each row becomes a vertex and each column becomes
a hyperedge. Other hypergraph models exist: in the “fine-grain” model, each
non-zero is a vertex [3]. For the DIMACS challenge, all input is symmetric
and given as undirected graphs. Given a graph G(V,E), we will use the follow-
ing derived hypergraph H(V,E0): for each vertex v 2 V , create an hyperedge
e 2 E0 that contains v and all its neighbors. In this case, it is easy to see that
CV (H,⇧) = CV

sum

(G,⇧). Thus, we do not need to distinguish between com-
munication volume in the graph and hypergraph models.
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2.3 Which is More Relevant?

Most partitioners minimize either the total edge cut (EC) or the total commu-
nical volume (CV-sum). A main reason for this choice is that algorithms for
these metrics are well developed. Less work has been done to minimize the max-
imum communication volume (CV-max), though in a parallel computing setting
this may be more relevant as it corresponds to the max communication for any
process.

In order to compare the three metrics and how they correspond to the actual
performance in an application we use a GMRES iteration as the “application”.
We used the matrices from the UF sparse matrix collection group of the DI-
MACS challenge for these tests. We use no preconditioner as the performance
characteristics will be di↵erent based on whether the preconditioner is expensive
or not. Instead our goal is to compare just the matrix-vector multiply time in
the GMRES iteration. As there is no preconditioner and some of these prob-
lems are ill-conditioned we might not converge at all, so we report the solve
time for 1000 iterations for the three options: no partitioning, graph partition-
ing with ParMetis, hypergraph partitiong with Zoltan hypergraph partitioner.
The results are shown in table 1. We repeated the experiments thrice and used
the median for our results. We can see from the results that it is important
to do partitioning to balance the load and minimize the communication (ex-
cept in the af shell problem). We also observe that hypergraph partitioning does
slightly better than graph partitioning in terms of solve time. However, for these
symmetric problems the di↵erence between graph and hypergraph partitioning
is small in terms of real performance gain in the application. We will show in
section 4.2 that the partitioners actually di↵er in terms of the measured perfor-
mance metrics for the problems shown in Table 1. However, we do not see that
di↵erence in the metrics translate to measurable real performance gain in the
time for the matrix-vector multiply.

Table 1. Solve Time for 1000 iterations of GMRES for di↵erent partitioning options

Matrix Name No Partitioning ParMetis Zoltan PHG
audikw1 8.81 3.22 3.01
nlpkkt120 8.45 6.18 6.00
G3 circuit 2.76 1.59 1.55
af shell10 2.61 2.74 2.79

3 Zoltan PHG

Zoltan was originally designed as a toolkit for dynamic load-balancing [4]. It
included several geometric partitioning algorithms, plus interfaces to external
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(third-party) graph partitioners, such as ParMetis. Later, a native parallel hy-
pergraph partitioner (PHG) was developed [5] and added to Zoltan. While PHG
was designed for hypergraph partitioning, it can also be used for graph parti-
tioning but it is not optimized for this use case. (Note: “PHG” now stands for
Parallel Hypergraph and Graph partitioner.)

Zoltan PHG is a parallel multilevel partitioner, consisting of coarsening, ini-
tial partitioning, and refinement phases. The coarsening scheme is a variation of
heavy connectivity or inner product matching, where we match (merge) vertices
that have many neighbors in common. If A is the edge-vertex incidence matrix
of the hypergraph, then ATA is the vertex similarity matrix used for the match-
ing (aggregation). Note that we do not compute ATA explicitly (which would
be both expensive and require a lot of memory), but rather compute selected
entries as needed. This is often the most expensive part of the entire partitioning
code. We believe it is not necessary to compute the vertex similarities between
all pairs of vertices to do the matching, and indeed PHG has options to reduce
the work by giving preference to local data. However, we decided to use only
the default option (full matching) in our experiments. One improvement added
after [5] is that we allow more than two vertices to merge into a coarse ver-
tex. We have observed that this improves the partition quality in many cases.
The initial partition is a randomized greedy heuristic. The refinement is the
Fidduccia-Matheyses (FM) method for the communication volume metric. In
parallel, exact FM is too costly so instead we use a simplified version of FM. Al-
though the parallel version may yield worse quality results than the serial (true)
FM, we have observed that in practice the di↵erence is fairly small.

Zoltan PHG uses recursive bisection to partition into k parts. Note that k
can be any integer greater than one, and does not need to be a power of two.
Also, Zoltan can run on p processes, where k 6= p. However, the typical use case
is k = p.

A novel feature of Zoltan PHG is that internally, the hypergraph is mapped
to processes in a 2D block fashion. That is, the processes are logically mapped
to a p

x

by p
y

grid, where p = p
x

p
y

. The advantage of this design is to reduce
communication. Instead of expensive all-to-all or any-to-any communication, all
communication is limited to process rows or columns. The drawback of this
design is that there are more synchronization points than if an 1D distribution
had been used. For further details on PHG, we refer to [5]. The basic algorithm
remains the same, though several improvements have been made over the years.

When PHG is used as a graph partitioner, each hyperedge is of size two.
When we coarsen the hypergraph, only vertices are coarsened, not hyperedges.
This means that the symmetry of graphs is destroyed already after the first level
of coarsening. We conjecture that PHG is not particularly e�cient as a graph
partitioner because it does not take advantage of the special structure of graphs
(in particular, symmetry). Still, we believe it is fair to compare PHG as a graph
partitioner because it uses exactly the same code as the hypergraph partitioner,
so any performance di↵erence is due to the model not the implementation.
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4 Experiments

4.1 Software, Platform, and Data

Our primary goal is to study the behavior of Zoltan PHG as a graph and a
hypergraph partitioner, using di↵erent objectives and a range of data sets. We
use Zoltan 3.5 (Trilinos 10.8). Our test program was based on the test driver
zdrive. We used ParMetis 4.0 as a reference and compare it with Zoltan PHG.

Our compute platform was Hopper, a Cray XE6 at NERSC. Hopper has 6,384
compute nodes, each with 24 cores (two 12-core AMD MagnyCours) and 32 GB
of memory. The 10th DIMACS challenge has an abundance of test graphs, and
it was impractical to run all the test data. Instead, we selected five test families
that are relevant to the computational problems we have encountered at Sandia.
Within each family, we selected (up to) five graphs. Usually, we picked the largest
ones, though we tried to avoid graphs that were too similar. In addition we picked
four graphs two each from the street networks and clustering instances to compile
our 22 test problems. The test problems we used are listed in Table 2.

Table 2. Test Matrices from the Challenge problems used in our experiments

Matrix Name DIMACS Group Vertices Edges
af shell10 UF matrix 1508065 25582130
G3 circuit UF matrix 1585478 3037674

cage15 UF matrix 5154859 94044692
audikw1 UF matrix 943695 38354076

nlpkkt120 UF matrix 3542400 46651696
auto Walshaw 448695 3314611

matrix144 Walshaw 144649 1074393
wave Walshaw 156317 1059331

fe ocean Walshaw 143437 409593
m14b Walshaw 214765 1679018

venturiLevel3 Numerical 4026819 8054237
packing Numerical 2145852 17488243
channel Numerical 4802000 42681372

hugbubbles-0020 Dynamic Frames 21198119 31790179
hugetrace-0020 Dynamic Frames 16002413 23998813
hugetric-0020 Dynamic Frames 7122792 10680777

coPapersDBLP Coauthor 540486 15245729
coPapersCiteseer Coauthor 434102 16036720

asia.osm Streets 11950757 12711603
europe.osm Streets 50912018 54054660
road central Clustering 14081816 16933413

road usa Clustering 23947347 28854312

We partitioned the graphs into 16, 64, 256, and 1024 parts. In the parallel
computing context, this covers everything from a multicore workstation to a
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small-sized parallel computer. Except where stated otherwise, we ran the parti-
tioner on the same number of cores as the target number of parts.

Due to limited compute time on Hopper, we ran each partitioning test only
once. Zoltan uses randomization, so results may vary from run to run. However,
for large graphs, we found that the random variation is relatively small. We
believe it is fair to draw conlusions based on several data sets, though one should
be cautious about overinterpreting any single data point.

4.2 Zoltan vs. ParMetis

(a) Edge Cut (b) Communication Volume (Max)

(c) Communication Volume (Sum)

Fig. 1. Zoltan Vs Parmetis: Comparing Zoltan’s partitioning with graph and hy-
pergraph model with Parmetis for symmetric problems for 256 parts and 256 MPI
processes.

In this section, we compare Zoltan’s graph and hypergraph partitioning with
ParMetis’s graph partitioning. We partition the graphs into 256 parts with 256
MPI processes. The results for the three metrics total edge cut (EC), the max-
imum communication volume (CV-max) and the total communication volume
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(CV-sum) are shown in Figure 1. We present the performance profile for the 22
matrices for the three metrics.

Note that the main advantage of the hypergraph partitioners is the ability to
handle unsymmetric problems and to reduce the communication volume for such
problems directly (without symmetrizing the problems). However, the DIMACS
challenge problems are all symmetric problems. We take this opportunity to
compare against the graph partitioners even for symmetric problems.

In terms of the edge cut metric ParMetis does better than Zoltan for 20
of the matrices and Zoltan’s graph model does better for just two matrices.
However, Zoltan’s graph model is within 15% of ParMetis’s edge cuts for 82% of
the problems (see Figure 1(a)). The four problems that cause trouble to Zoltan’s
graph model are the problems from the street networks and clustering instances.

In terms of the CV-sum metric Zoltan’s partitioning with the hypergraph
model, is able to do better than Zoltan’s graph model in all the instances, and is
better than ParMetis for 33% of the problems, and is within 6% or better of CV-
sum of the ParMetis for another 44% of the problems (see Figure 1(c)). Again the
street networks and the clustering instances are the ones that cause problems for
the hypergraph partitioning. In terms of the CV-max metric Zoltan’s hypergraph
partitioning is better than the other two methods for 27% of the problems, and
within 15% of the CV-max for another 42% of the problems (see Figure 1(b)).

From our results, we observe that even for symmetric problems hypergraph
partitioners can perform nearly as well as (or even better than) the graph parti-
tioners depending on the problems and the metrics one cares about. We also note
that four of these 22 instances come from the same problems we used in Section
2.3 and Zoltan does better in two problems and ParMetis does better on other
two problems in terms of the CV-max metric. In terms of EC metric ParMetis
does better for all these four problems. However, as we can see from Table 1
the actual solution time is slightly better when we use the hypergraph parti-
tioning (for the three problems with performance improvements) irrespective of
which method is better in terms of the metrics we compute. To be precise, we
should again note that the di↵erences in actual solve time between graph and
hypergraph partitioning are minor for those four problems. We would like to
emphasize that we are not able to observe any di↵erence in the performance of
the actual application when the di↵erence in the metrics is a small percentage.
We study the characteristics of Zoltan’s graph and hypergraph partitioning in
the rest of this paper.

4.3 Zoltan graph vs. hypergraph model

We did more extensive experiments on the DIMACS problems with the graph
and hypergraph partitioning of Zoltan. For each problem from Table 2 we com-
pute the three metrics (EC, CV-max, CV-sum) for part sizes 16, 64, 256, 1024.
All the experiments use the same number of MPI processes as the part sizes. All
the data from these test runs are in Tables 4 and 5. We can observe from these
results that based on the EC metric, Zoltan’s graph partitioning is the best for
most problems. In terms of the CV-sum metric the hypergraph partitioning fares
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(a) (b)

Fig. 2. Comparing Zoltan’s partitioning with graph and hypergraph model Quality
metrics for di↵erent part sizes.

(a) (b)

Fig. 3. Comparing Zoltan’s partitioning with graph and hypergraph model Quality
metrics for di↵erent part sizes.

better. Neither of the algorithms optimize, CV-max metric and as expected the
results are mixed for this metric.

We show the scalability of the three metrics for graph and hypergraph parti-
tionings for two problems – cage15 and hugetrace-0020 – in Figure 2. We normal-
ize the metrics with respect to the values for the 16 parts case in these figures.
These scalability results are for the “good” problems and from the results we
can see why we call these problems the “good” problems – EC and CV-sum go
up by a factor of 3.5 to 4.5 when going from 16 parts to 1024 parts. In contrast,
we also show the scalability of the metrics from one problem from the street
networks and clustering set each (road central and asia.osm) in Figure 3. Note
that for the some of these problems the metrics scale with similar values that the
lines overlap in the graph. These second set of problems are challenging for both
our graph and hypergraph partitioners as EC and CV-max go up by a factor
60-70 going from 16-1024 (for road central).
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4.4 Zoltan scalability

A lot of Zoltan’s users use Zoltan within their parallel applications dynamically.
As a result it is important for Zoltan to be a scalable parallel hypergraph par-
titioner. We have made several improvements within Zoltan over the past few
years and we evaluate our parallel scalabilty for the DIMACS problems instances
in this section. Note that being a parallel hypegraph partitioner also enables us
to solve large problems than does not fit into the memory of a compute node
in a scalable way. However, we were able to partition all the DIMACS instances
except the matrix europe.osm with 16 cores. We omit, the europe.osm matrix
and three small matrices from the walshaw group that get partitioned within
two seconds even with 16 cores, from these tests. The scalability results for the
rest of the 18 matrices are shown in Figure 4. We normalize the time for all
the runs with time to compute 16 parts. Note that even though the matrix size
remains the same, this is not a strong scaling test as we compute 1024 parts in
1024 MPI processes case.

Fig. 4. Scalability of Zoltan Hypergraph Partitioning time for DIMACS challenge ma-
trices normalized to the time for 16 MPI processes and 16 parts.

Even with the increase in the amount of work for large matrices like cage15
and hugebubbles-0020 we see performance improvements as we go to 1024 MPI
processes. However, for smaller problems like the auto or m14b the performance
remains flat (or degrades) as we go from 256 MPI processes to 1024 MPI pro-
cesses.

The scalability of Zoltan’s graph partitioners is shown in Figure 5. We see
that the graph partitioner tends to scale well for most problems. However, the
hypergraph partitioner is faster than our graph partitioner in terms of actual
execution time for lot of problems. The actual timings for the 18 problems are
presented in Table 6 and Table 7 as Appendix A.
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Fig. 5. Scalability of Zoltan Graph Partitioning time for DIMACS challenge matrices
normalized to the time for 16 MPI processes and 16 parts.

Table 3. Scalability of Metrics: Computing 1024 parts using 24 and 1024 MPI processes
for Zoltan’s hypergraph partitioning

MPI procs =1024 MPI Procs = 24
nparts = 1024 nparts = 1024

Matrix Name Number of Cut Edges CV-Sum Number of Cut Edges CV-Sum
af shell10 2305000 484380 1885000 393175
G3 circuit 168000 244327 167000 230438

cage15 15000000 11040631 9350000 12245702
audikw1 16250000 2007867 10150000 1402269

nlpkkt120 9600000 2490467 7300000 2805320
auto 705000 407832 640000 392719

matrix144 312500 191915 284500 186071
wave 304500 204647 302500 203246

fe ocean 119000 119483 81000 145516
m14b 440500 246973 386500 230171

venturiLevel3 224500 274551 226500 253868
packing 1775000 889457 1685000 841273
channel 4595000 2185454 4450000 2093403

hugbubbles-0020 235000 437720 220500 412565
hugetrace-0020 199000 372846 188000 354133
hugetric-0020 133500 247709 123500 231937

coPapersDBLP 8800000 2180871 9200000 2211715
coPapersCiteseer 7400000 1137207 7700000 1151086

asia.osm 63500 123418 60000 116363
europe.osm 119500 236043 116500 230746
road central 137000 257598 127000 239519

road usa 148500 280049 145000 272844
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4.5 Partitioning on a single node to improve quality

As we discussed before Zoltan can compute a partitioning statically with fewer
MPI processes for arbitrary number of parts. This usually results in better qual-
ity than the dynamic approach. However, the users have to retain the partition
in this case for future use. We evaluate this case for the symmetric matrices from
the DIMACS collection for just the hypergraph partitioning. We compute 1024
parts with 24 MPI processes. Our assumption is that the user will be willing
to devote one compute node to compute the partition he needs. We present the
results of these experiments for our 22 matrices in Table 3. On an average the
edge cuts gets reduced by 10% and the CV-sum gets reduced by 4% when we
compute 1024 parts with just 24 MPI processes instead of using the 1024 MPI
processes. This confirms our conjecture that using fewer cores (MPI processes)
gives higher quality results, and raises the question: Could we improve on-node
partitioning further by developing a shared-memory partitioner?

5 Conclusions

We have evaluated the parallel performance of Zoltan PHG, both as a graph
and hypergraph partitioner on test graphs from the DIMACS challenge data
set. We also made comparisons to ParMetis, a popular graph partitioner. We
observed that ParMetis consistently obtained best edge cut (EC), while the
results for communication volume (CV) was mixed. The di↵erence between the
partitioners is small for most of the test problems. As expected, PHG as a
graph partitioner was better at minimizing the edge cut (EC) while PHG as
a hypergraph partitioner was better at minimizing the communication volume
(CV). We used the example problems to show that small di↵erence in the quality
metrics usually do not translate into application performance. We also showed
that Zoltan is scalable on large number of processors (up to at least 1024).

In our opinion, the DIMACS graph partitioning challenge was biased towards
graph partitioners (expected – given the name graph partitioning challenge)
because only undirected (symmetric) graphs were included. Many real-world
problems are unsymmetric (e.g. web link graphs, circuit simulation problems).
Even when some such data was included, it had been symmetrized in some way.
Usually, it is better to work with the unsymmetric data directly. Hypergraph
partitioners are better at handling unsymmetric or rectangular data. Thus it
is remarkable that a code like PHG that was designed for such cases, also did
comparable to (or slightly worse than) graph partitioners on symmetric data.
Thus, we believe Zoltan PHG is a good universal partitioner for all types of
input data.

Acknowledgements

We thank Karen Devine for helpful discussions. We thank the Department of En-
ergy’s O�ce of Science, the Advanced Scientific Computing Research (ASCR)



13

Table 4. Comparison of the three metrics for Zoltan graph and hypergraph partitioning

Hypergraph Graph
Matrix Name nprocs EC CV

Max

CV
Sum

EC CV
Max

CV
Sum

af shell10 16 218500 3535 43840 195000 3340 39185
64 456000 2175 92065 453000 2575 331290

256 1025000 1365 209125 950000 1220 194180
1024 2305000 945 484380 1935000 605 403085

G3 circuit 16 14300 1942 21538 11100 2030 21638
64 31100 1179 47165 27050 1261 51124

256 77500 769 113315 68000 894 124381
1024 168000 449 244327 151000 496 278351

cage15 16 4180000 248414 2448287 2885000 312195 3166527
64 7450000 126508 4427386 4570000 170636 5444892

256 10650000 61678 7134164 6900000 72176 8193941
1024 15000000 26551 11040631 10750000 33550 12438234

audikw1 16 1710000 17103 155421 1460000 16629 156375
64 3795000 8707 344496 3085000 8430 345462

256 7600000 4659 734685 5950000 4282 719280
1024 16250000 3192 2007867 10300000 2230 1434570

nlpkkt120 16 1705000 33587 380658 1520000 44413 507311
64 3325000 17405 739689 2685000 20098 890990

256 5800000 8667 1400878 4645000 8718 1599229
1024 9600000 4149 2490467 7500000 3944 2735928

auto 16 96500 4401 48443 97000 5097 51200
64 207000 2530 106127 205000 3050 111579

256 388500 1230 209196 376500 1292 214646
1024 705000 681 407832 645000 585 398028

matrix144 16 46900 2041 23854 46750 2297 25079
64 96000 1254 50687 91500 1696 51033

256 176000 679 98349 167500 724 98699
1024 312500 338 191915 286500 345 186927

wave 16 53000 2334 28957 52500 2555 30167
64 100500 1256 57271 98500 1375 58962

256 180500 641 109870 177000 619 112661
1024 304500 320 204647 289000 336 204295

fe ocean 16 15800 1329 14634 10450 1618 15925
64 35950 764 33351 27100 1040 41725

256 69000 404 68627 51000 470 80115
1024 119000 182 119483 86000 233 148394

m14b 16 54500 2560 25878 54500 2434 26941
64 117500 1526 57882 113500 1325 59052

256 229000 870 118509 220000 912 120075
1024 440500 466 246973 390000 399 233121

venturiLevel3 16 17250 1853 21272 14650 2181 25249
64 44050 1291 53783 36800 1423 62250

256 229000 870 120128 220000 912 143500
1024 224500 539 274551 188000 568 313911

packing 16 242500 10442 114760 232000 11098 114920
64 525000 7329 252639 510000 8472 254186

256 960000 3880 467618 945000 3819 478043
1024 1775000 2164 889457 1695000 1893 882719

channel 16 695000 22441 299236 680000 23767 299903
64 1435000 14416 631783 1390000 12535 622254

256 2610000 6722 1185657 2540000 6464 1174761
1024 4595000 3458 2185454 4485000 3060 2184724
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Table 5. Comparison of the three metrics for Zoltan graph and hypergraph partitioning

Hypergraph Graph
Matrix Name nprocs EC CV

Max

CV
Sum

EC CV
Max

CV
Sum

hugebubbles-0020 16 19750 3071 38474 21250 3475 42482
64 45000 1790 87341 46800 1957 93598

256 103000 1347 195311 106000 1333 212458
1024 235000 794 437720 239500 849 479382

hugetrace-0020 16 17200 3191 33101 17500 3237 35032
64 40000 1951 77276 42000 1753 84014

256 89500 1074 170884 90500 1042 181392
1024 199000 704 372846 202000 647 404158

hugetric-0020 16 11300 1955 22039 13050 2563 26098
64 27250 1171 52309 28250 1362 56494

256 60500 682 113981 61000 774 121534
1024 133500 432 247709 136500 510 273330

coPapersDBLP 16 4490000 64230 660961 1630000 67653 812638
64 6050000 30089 1020146 2160000 35879 1180556

256 7350000 14752 1416774 2955000 16958 1613693
1024 8800000 7105 2180871 3740000 7548 2099688

coPapersCiteseer 16 2555000 30840 310742 925000 32074 365210
64 3285000 13935 439622 1290000 16428 504211

256 4550000 8380 635241 1935000 9629 726315
1024 7400000 4901 1137207 3185000 4495 959723

asia.osm 16 347 84 693 372 101 744
64 1280 78 2526 1290 92 2583

256 10400 196 20408 10300 247 20552
1024 63500 329 123418 67000 414 133366

europe.osm 16 - - - - - -
64 5000 313 9968 4865 299 9724

256 20850 385 41456 21350 361 42653
1024 119500 517 236043 121500 630 242535

road central 16 2195 414 4245 2195 466 4383
64 7100 520 13562 7100 612 14176

256 24150 337 45905 26600 556 52741
1024 137000 447 257598 158500 554 313740

road usa 16 2545 597 4971 2250 414 4487
64 7200 545 13906 7350 467 14606

256 28100 480 53570 28950 479 57603
1024 148500 608 280049 160000 685 316701
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A Timings of Zoltan Graph and Hypergraph partitioner
Table 6. Time in Seconds to compute the 16, 64, 256 and 1024 parts using Zoltan’s
Hypergraph partitioner for DIMACS problems

Matrix Name nprocs=16 nprocs=64 nprocs=256 nprocs=1024
af shell10 25.4 13.93 8.23 8.44
G3 circuit 12.39 7.99 5.71 5.78

cage15 263.55 126.04 64.76 43.5
audikw1 55.63 26.25 12.93 7.64

nlpkkt120 103.71 52.79 27.2 22.68
auto 7.38 3.93 2.66 2.53
m14b 2.96 1.69 1.22 1.97

venturiLevel3 32.45 20.36 14.97 22.92
packing 40.31 23.33 14.44 10.09
channel 108.5 57.04 31.92 30.53

hugebubbles-0020 238.9 134.9 98 73.74
hugetrace 155.5 90.8 81.7 61.3
hugetric 63.34 39.24 29.75 45.29

coPapersDBLP 36.1 18.64 10.52 7.22
coPapersCiteseer 33.8 18.5 11.4 7.58

asia.osm 67.6 43.3 44.5 29.1
road central 117.2 71.5 62.5 56.9

road usa 180.3 109.4 84.6 83.6

Table 7. Time in Seconds to compute the 16, 64, 256 and 1024 parts using Zoltan’s
Graph partitioner for DIMACS problems

Matrix Name nprocs=16 nprocs=64 nprocs=256 nprocs=1024
af shell10 46.16 29.2 18.69 12.71
G3 circuit 11.09 7.8 6.37 5.3

cage15 234.94 131.89 78.76 56.26
audikw1 97.1 50.9 28.41 16.72

nlpkkt120 155.62 84.9 53.61 35.26
auto 8.69 5.01 3.57 3.7
m14b 3.75 2.23 1.61 1.56

venturiLevel3 29.9 19.66 14.04 12.16
packing 45.95 27.08 17.32 15.6
channel 113.76 68.88 41.23 37.28

hugebubbles-0020 200.3 114.9 85.8 66.22
hugetrace 131.9 80.1 60.4 50.1
hugetric 53.44 33.9 25.7 29.23

coPapersDBLP 34.72 19.49 12.17 7.55
coPapersCiteseer 35 19.5 10.6 7.66

asia.osm 60.2 41.6 34 29.9
road central 95.6 62.5 58.9 54

road usa 156.1 99 79.4 137.6


